920 research outputs found

    A Hiker's Guide to K3 - Aspects of N=(4,4) Superconformal Field Theory with central charge c=6

    Get PDF
    We study the moduli space M{\cal M} of N=(4,4) superconformal field theories with central charge c=6. After a slight emendation of its global description we find the locations of various known models in the component of M{\cal M} associated to K3 surfaces. Among them are the Z_2 and Z_4 orbifold theories obtained from the torus component of M{\cal M}. Here, SO(4,4) triality is found to play a dominant role. We obtain the B-field values in direction of the exceptional divisors which arise from orbifolding. We prove T-duality for the Z_2 orbifolds and use it to derive the form of M{\cal M} purely within conformal field theory. For the Gepner model (2)^4 and some of its orbifolds we find the locations in M{\cal M} and prove isomorphisms to nonlinear sigma models. In particular we prove that the Gepner model (2)^4 has a geometric interpretation with Fermat quartic target space.Comment: 58 pages, version submitted to Comm. Math. Phys; references added and minor mistakes correcte

    Dilogarithm Identities in Conformal Field Theory

    Full text link
    Dilogarithm identities for the central charges and conformal dimensions exist for at least large classes of rational conformally invariant quantum field theories in two dimensions. In many cases, proofs are not yet known but the numerical and structural evidence is convincing. In particular, close relations exist to fusion rules and partition identities. We describe some examples and ideas, and present some conjectures useful for the classification of conformal theories. The mathematical structures seem to be dual to Thurston's program for the classification of 3-manifolds.Comment: 14 pages, BONN-preprint. (a few minor changes, two major corrections in chapter 3, namely: (3.10) only holds in the case of the A series, Goncharovs conjecture is not an equivalence but rather an implication and a theorem

    An evaluation of image feature detectors based on spatial density and temporal robustness in microsurgical image processing

    Get PDF
    Optical image processing is part of many applications used for brain surgeries. Microscope camera, or patient movement, like brain-movement through the pulse or a change in the liquor, can cause the image processing to fail. One option to compensate movement is feature detection and spatial allocation. This allocation is based on image features. The frame wise matched features are used to calculate the transformation matrix. The goal of this project was to evaluate different feature detectors based on spatial density and temporal robustness to reveal the most appropriate feature. The feature detectors included corner-, and blob-detectors and were applied on nine videos. These videos were taken during brain surgery with surgical microscopes and include the RGB channels. The evaluation showed that each detector detected up to 10 features for nine frames. The feature detector KAZE resulted in being the best feature detector in both density and robustness

    Orbifold resolutions with general profile

    Full text link
    A very general class of resolved versions of the C/Z_N, T^2/Z_N and S^1/Z_2 orbifolds is considered and the free theory of 6D chiral fermions studied on it. As the orbifold limit is taken, localized 4D chiral massless fermions are seen to arise at the fixed points. Their number, location and chirality is found to be independent on the detailed profile of the resolving space and to agree with the result of hep-th/0409229, in which a particular resolution was employed. As a consistency check of the resolution procedure, the massive equation is numerically studied. In particular, for S^1/Z_2, the "resolved" mass--spectrum and wave functions in the internal space are seen to correctly reproduce the usual orbifold ones, as the orbifold limit is taken.Comment: 28 pages, 3 figures, typos corrected, references adde

    Radiative corrections to the pressure and the one-loop polarization tensor of massless modes in SU(2) Yang-Mills thermodynamics

    Full text link
    We compute the one-loop polarization tensor Π\Pi for the on-shell, massless mode in a thermalized SU(2) Yang-Mills theory being in its deconfining phase. Postulating that SU(2)CMB=todayU(1)Y_{\tiny{CMB}}\stackrel{\tiny{today}}=U(1)_Y, we discuss Π\Pi's effect on the low-momentum part of the black-body spectrum at temperatures ∌2...4\sim 2... 4 TCMBT_{\tiny{CMB}} where TCMB∌2.73T_{\tiny{CMB}}\sim 2.73 K. A table-top experiment is proposed to test the above postulate. As an application, we point out a possible connection with the stability of dilute, cold, and old innergalactic atomic hydrogen clouds. We also compute the two-loop correction to the pressure arising from the instantaneous massless mode in unitary-Coulomb gauge, which formerly was neglected, and present improved estimates for subdominant corrections.Comment: 25 pages, 17 figs, v4: consequences of a modification of the evolution equation for the effectice coupling implemented, no qualitative change of the physic

    Laplacian modes probing gauge fields

    Full text link
    We show that low-lying eigenmodes of the Laplace operator are suitable to represent properties of the underlying SU(2) lattice configurations. We study this for the case of finite temperature background fields, yet in the confinement phase. For calorons as classical solutions put on the lattice, the lowest mode localizes one of the constituent monopoles by a maximum and the other one by a minimum, respectively. We introduce adjustable phase boundary conditions in the time direction, under which the role of the monopoles in the mode localization is interchanged. Similar hopping phenomena are observed for thermalized configurations. We also investigate periodic and antiperiodic modes of the adjoint Laplacian for comparison. In the second part we introduce a new Fourier-like low-pass filter method. It provides link variables by truncating a sum involving the Laplacian eigenmodes. The filter not only reproduces classical structures, but also preserves the confining potential for thermalized ensembles. We give a first characterization of the structures emerging from this procedure.Comment: 43 pages, 26 figure
    • 

    corecore